
MATH 521A: Abstract Algebra
Exam 3 Solutions

1. Set f(x) = 3x3 + 5x2 + 6x, g(x) = 3x4 + 5x3 + x2 + 3x + 2, both in Z7[x]. Use the extended Euclidean algorithm
to find gcd(f, g) and to find polynomials s(x), t(x) such that gcd(f, g) = f(x)s(x) + g(x)t(x).

We perform the division algorithm repeatedly to get:

3x4 + 5x3 + x2 + 3x + 2 = (x)(3x3 + 5x2 + 6x) + (2x2 + 3x + 2)

3x3 + 5x2 + 6x = (5x + 2)(2x2 + 3x + 2) + (4x + 3)

2x2 + 3x + 2 = (4x + 3)(4x + 3) + 0
Hence gcd(f, g) is the monic multiple of 4x + 3, namely 2(4x + 3) = x + 6. We now back-substitute twice, simplify,
and double both sides, to get:

4x + 3 = (3x3 + 5x2 + 6x) + (2x + 5)(2x2 + 3x + 2)

4x + 3 = (3x3 + 5x2 + 6x) + (2x + 5)
(
(3x4 + 5x3 + x2 + 3x + 2) + (−x)(3x3 + 5x2 + 6x)

)
4x + 3 =

(
1 + (2x + 5)(−x)

)
(3x3 + 5x2 + 6x) + (2x + 5)(3x4 + 5x3 + x2 + 3x + 2)

4x + 3 = (5x2 + 2x + 1)(3x3 + 5x2 + 6x) + (2x + 5)(3x4 + 5x3 + x2 + 3x + 2)

x + 6 = (3x2 + 4x + 2)(3x3 + 5x2 + 6x) + (4x + 3)(3x4 + 5x3 + x2 + 3x + 2)
Hence we want s(x) = 3x2 + 4x + 2 and t(x) = 4x + 3.

2. Factor f(x) = x4 + x3 + 6x2 − 14x + 16 ∈ Q[x] into irreducibles.

We calculate f(x+ 1) = x4 + 5x3 + 15x2 + 5x+ 10. Note that p = 5 divides each coefficient except the leading one,
and p2 = 25 does not divide the constant. Hence by Eisenstein’s criterion f(x+ 1) is irreducible. By the translation
trick, f(x) is irreducible.

3. Let F be a field. We define the “derivative” operator D : F [x]→ F [x] via

D(anx
n + an−1x

n−1 + · · ·+ a1x + a0) = nanx
n−1 + (n− 1)an−1x

n−2 + · · ·+ 1a1.

This operator satisfies, for all f, g ∈ F [x] and for all c ∈ F :
(a) D(f + g) = D(f) + D(g); (b) D(cf) = cD(f); (c) D(fg) = fD(g) + D(f)g
Suppose f, g ∈ F [x] and f2|g. Prove that f |D(g).

Because f2|g there is some polynomial h ∈ F [x] such that g(x) = f(x)f(x)h(x). We apply property (c) twice
to get D(g) = D(f(fh)) = fD(fh) + D(f)fh = f

(
fD(h) + D(f)h

)
+ D(f)fh = f

(
fD(h) + D(f)h + D(f)h) =

f(fD(h) + 2D(f)h
)
. Since fD(h) + 2D(f)h ∈ F [x], we have f |D(g), as desired.

4. Set f(x) = x + 2x2, g(x) = x + 4x2, both in Z8[x]. Prove that f |g and g|f .

All solutions involve at least some trial and error.
Direct Solution: (x + 2x2)(1 + 2x + 4x2) = x + 4x2 and (x + 4x2)(1 + 6x) = x + 2x2.
Alternate Solution: (x+ 2x2)(1 + 2x+ 4x2) = x+ 4x2. But 1 + 2x+ 4x2 is a unit, since (1 + 2x+ 4x2)(1 + 6x) = 1,
so in fact f, g are associates.

5. Set f(x) = xn + xn−1 ∈ F [x]. Carefully determine all divisors of f(x).

Polynomial f splits into n linear factors, namely xn−1(x+1). Because F [x] has unique factorization, any factor must
be an associate of a product of some subset of those n linear factors. Hence, the factors are precisely axi(x + 1)j ,
where a is any nonzero element of F , i satisfies 0 ≤ i ≤ n− 1, and j satisfies 0 ≤ j ≤ 1.

6. For ring R, a ∈ R, and n ∈ N, we say a has additive order n if a + a + · · ·+ a︸ ︷︷ ︸
n

= 0R, and for m < n we have

a + a + · · ·+ a︸ ︷︷ ︸
m

6= 0R. We write this ordR(a) = n. Suppose every element of R has an order (not necessarily the

same one). Prove that every element of R[x] has an order.

Let f(x) = anx
n + · · ·+a1x+a0, an arbitrary element of R[x]. Set t =

∏n
i=0 ordR(ai). We calculate f + f + · · · f︸ ︷︷ ︸

t

=

(an + · · ·+ an︸ ︷︷ ︸
t

)xn + · · ·+ (a1 + · · ·+ a1︸ ︷︷ ︸
t

)x+ (a0 + · · ·+ a0︸ ︷︷ ︸
t

) = 0, since t is a multiple of the orders of each coefficient.

Hence f has some order, and that order is at most t. [If we choose t as the lcm of the orders of the coefficients,
instead of their product, then we get the order of f exactly (instead of a bound).]


